Komplexe aus Cadmium(II)- und Oxalat-ion

Von

Emilio Bottari

Istituto di Chimica analitica, Universitá di Roma, Italien

Mit 1 Abbildung

(Eingegangen am 2. Dezember 1974)

Complexes between Cadmium(II) and Oxalate

Complex formation between Cd(II) and oxalate has been studied before the precipitation at 25 °C and 1M-NaClO₄, by means of glass- and cadmium amalgam electrodes.

The e.m.f. data are explained with the following equilibrium:

 $Cd^{2+} + C_2O_4^{2-} \rightleftharpoons CdC_2O_4 \qquad \log \beta_1 = 2.75 \pm 0.05$

Die Bildung von Komplexen aus Cadmium(II) und Oxalat-Ion wurde von verschiedenen Autoren studiert.

Clayton und Vosburg¹ haben durch Löslichkeits- und potentiometrische Messungen, die mit einer Cadmiumamalgam-Elektrode bei 25 °C und Ionenstärke null, in Gegenwart von festem CdC_2O_4 , durchgeführt wurden, die Werte zweier Konstanten für Gleichgewichte bestimmt:

 $\begin{array}{ll} \mathrm{Cd}^{2+} &+ \mathrm{C}_2\mathrm{O}_4{}^{2-} \rightleftharpoons \mathrm{Cd}\mathrm{C}_2\mathrm{O}_4 & \log k_1 = 3,52 \\ \mathrm{Cd}\mathrm{C}_2\mathrm{O}_4 &+ \mathrm{C}_2\mathrm{O}_4{}^{2-} \rightleftharpoons \mathrm{Cd}(\mathrm{C}_2\mathrm{O}_4){}_2{}^{2-} & \log k_2 = 1,77 \end{array}$

McMasters, *Di Raimondo*, *Jones*, *Lindly* und *Zeltmann*² nahmen zur Erklärung ihrer polarographischen Messungen (bei 25 °C und 1*M*-NaNO₃) die Bildung dreier Komplexe [CdC₂O₄; Cd(C₂O₄)₂²⁻; Cd(C₂O₄)₃⁴⁻] mit den Stabilitätskonstanten log $k_1 = 2,61$, log $k_1k_2 = 4,11$, log $k_1k_2k_3 = 5.06$ an.

Andere Autoren haben die Veränderung der Verteilung zwischen org. und wäßr. Phase eines Cadmiumchelatkomplexes infolge der Anwesenheit von Oxalat-ionen, gemessen. Auf diesem Wege hat Stary³ bei 25 °C und 0,1M-KClO₄ den Komplex CdC₂O₄ mit log $k_1 = 3,71$ gefunden, während Hellwege und Schweiter⁴ annehmen, daß die folgenden zwei Komplexe: CdC₂O₄ (log $k_1 = 3,0$) und Cd(C₂O₄) 2^{2-} (log $k_1k_2 = 4,7$), vorhanden sind.

In der vorliegenden Arbeit wird mit potentiometrischen, mittels Cadmiumamalgam- und Glaselektroden ausgeführten Messungen die Reaktion Cd(II) + Oxalat-ion bei 25 °C und in 1M-NaClO₄, in Abwesenheit eines Niederschlags, untersucht. E. Bottari:

Zur Auffindung des Zwischengebietes, in dem sich kein Niederschlag bildet, wurde einer Lösung von $Cd(ClO_4)_2$ eine Lösung von Oxalationen zugegeben. Anfangs blieb die Lösung klar, nach der Bildung der Trübung bleibt jedoch der Niederschlag trotz Zugabe eines erheblichen Überschusses von $C_2O_4^{2-}$ bestehen. Die vorliegende Untersuchung wird daher nicht mit $C_2O_4^{2-}$ -Überschuß ausgeführt.

Symbole

$$B = \text{gesamte Cd}(\Pi)$$
-Konzentration; $b = \text{Konzentration an freiem Cd}^{2+}$

$$H = \text{gesamte } H^+$$
-Konzentration; $h = \text{Konzentration an freiem } H^+$

A = gesamte Oxalat-Konzentration; a = Konzentration an freiem C₂O₄²⁻

 $\eta = \log (B/b); L = \text{Oxalation der Formel C}_2\text{O}_4^{2-}$

 β_n = Gleichgewichts-Konstanten einer allgemeinen Reaktion:

$$\mathrm{Cd}^{2+} + n L \rightleftharpoons \mathrm{Cd}L_n,$$

wobei $n \ge 1$.

Meßverfahren

Zum potentiometrischem Studium der Reaktion zwischen Cd^{2+} und L bei 25 °C wurden die folgenden Meßketten benützt:

(---) Cd (Hg) / Meßprobe
$$S \parallel 1M$$
-NaClO₄ / $R. E.$ (+) (A)

(--) R. E. |
$$1M$$
-NaClO₄ || Meßprobe S | G. E. (+) (B)

wobei

$$R. E. = Ag, AgCl/0.01M[Cl-], 0.99M[ClO4-], 1.00M[Na+]$$

und G. E. = Glaselektrode.

Alle Meßproben hatten die folgende allgemeine Zusammensetzung:

$$B M$$
 an Cd(II);
 $H M$ an H⁺;
 $A M$ an L;
 $(1-2 B-H)M$ an Na⁺;
 $(1-2 A)M$ an ClO₄⁻,

wobei im Vergleich zu B, H und A eine große Menge NaClO₄ zugegeben wurde. Die Aktivitätskoeffizienten können daher als konstant⁵ betrachtet werden, und an Stelle der Aktivität kann man in allen Berechnungen die Konzentrationen setzen.

Deshalb ist die E. M. K. (in mV) von (A) und (B) bei 25 °C durch folgende Gleichungen gegeben:

$$E_A = E_A^{\circ} - 29,58 \log b - E_i \tag{1}$$

$$E_B = E_B^{\circ} + 59,15 \log h - E_j \tag{2}$$

wobei E_A° und E_B° konstant sind und am Anfang jeder Titration bestimmt werden, und E_j , nach *Biedermann* und *Sillén⁵*, nur von habhängig ist. Die vorliegende Untersuchung ergab, daß E_j gleich — 62h mV ist.

Die potentiometrischen Titrationen wurden in folgender Weise ausgeführt. Dem bekanntem Volumen von 1M-NaClO₄ wird eine Lösung mit bekannten *B* und *H* und 1,00M-ClO₄⁻ zugegeben, bis die gewählten *B* und *H* erreicht werden.

In diesem ersten Teil der Titrationen ist A = 0 und deshalb B = bund H = h. E_A° und E_B° konnten aus den E. M. K.-Messungen, die Werte von B und H und aus den Beziehungen (1) und (2) errechnet werden.

Im zweiten Teil der Titration wurden zwei verschiedene Lösungen von Cadmium(II)- und Oxalationen zugegeben, so daß B, H und die Ionenstärke konstant gehalten wurden, während A stufenweise bis zur beginnenden Bildung des Niederschlags zunahm. Aus B und Hund den Messungen von b und h mit den Meßketten (A) und (B) kann man die Werte von η (— log h) erhalten.

Experimenteller Teil

Reagentien und Analyse

Cadmium(II)-perchlorat. Es wurden zwei verschiedene Lösungen durch Lösen von CdO in einem kleinem Überschuß von $HClO_4$ hergestellt.

Die Verbindung CdO wurde auf zwei Wegen hergestellt:

1. CdO, für die erste Lösung benützt, wurde durch thermische Zersetzung von CdC_2O_4 gewonnen. $Cd(NO_3)_2 \cdot 4 H_2O$ (Merck p. a.) wurde 2mal aus HNO₃ ($\approx 0,01M$) umkristallisiert und daraus CdC_2O_4 durch Zugabe von $H_2C_2O_4$ (Merck p. a., 2mal aus Wasser umkristallisiert) ausgefällt.

Das erhaltene CdC₂O₄ zersetzte sich durch Erhitzen an der Luft bis 400 °C. Das erhaltene Produkt wurde 5 Stdn. bei 800 °C gehalten. Die quantitative Beziehung von CdC₂O₄ zu CdO stimmt mit dem ber. Wert innerhalb \pm 0,2% überein.

2. CdO, für die zweite Lösung benützt, wurde auf folgender Weise gewonnen. Mit 2M-H₂SO₄ geätzte Zinkstäbe (Merck p. a.) wurden in eine 1M-CdSO₄-Lösung (*Riedel de Häen* p. a., umkristallisiert 2mal aus $\approx 0.01M$ -H₂SO₄) getaucht. Nach Spülung und Trocknen wurde das erhaltene Cd° in einem kleinen Pyrexkolben im Ölvak. destilliert, der durch mehrmaliges Spülen mit N₂ und Evakuieren luftfrei gemacht wurde. 3 Stdn. nach Erreichen des Endvakuums begann man mit der Erhitzung, und das Cadmium destillierte, wenn die Temperatur der Muffel etwa 600 °C erreichte. Ein O₂-Strom lief durch das erhaltene destillierte Metall eine Nacht lang bei 700-800 °C, so daß Cd quantitativ in CdO überging (innerhalb $\pm 0.15\%$).

In den beiden so erhaltenen Lösungen von 1. und 2. waren Cl⁻, SO_4^{2-} , Fe^{3+} , Pb^{2+} , Zn^{2+} und NO_3^- abwesend.

Die exper. Werte für η (— log h), erhalten durch die Benützung beider Lösungen stimmen sehr gut innerhalb der Versuchsfehler überein.

Die gesamte Cd(II)-Konzentration in beiden Lösungen wurde nach Winkler⁶ als CdNH₄PO₄·H₂O bestimmt. Die Resultate mehrerer Bestimmungen stimmten innerhalb $\pm 0,1\%$ überein. Der analyt. Überschuß von H⁺ ($\approx 10^{-3}M$) wurde nach Gran⁷ bestimmt.

Natriumoxalat, Natriumperchlorat und Perchlorsäure waren wie in einer vorhergehenden Untersuchung⁸ bereitet und analysiert worden.

Cadmium-Amalgam (etwa 1% w/w) wurde in Titrationsgefäß aus gewogenem Hg und elektrolytischem Cd gewonnen.

Das elektrolytische Cd schied sich auf einer Pt-Elektrode (Kathodenpotential — 0.85 V gegen eine 1M-Kalomel-Elektrode) aus der 1M-CdSO₄ (aus umkristallisiertem Salz) ab.

Alle Vorgänge, die die Cd-Amalgambereitung betrafen, wurden in N₂-Atmosphäre durchgeführt. Der Stickstoff wurde wie in einer vorhergehenden Untersuchung gereinigt⁹.

Zur Vermeidung der Oxydation des Cd-Amalgams lief ein Strom von gereinigtem N_2 durch alle Meßlösungen während jeder Titration. Alle Lösungen wurden mit doppelt destilliertem Wasser hergestellt.

Einzelheiten zu den E. M. K.-Messungen

Die Ketten (A) und (B) (vgl. Forsling, Hietanen und Sillén¹⁰) waren bei 25 °C thermostatiert. Die E. M. K. der Kette (A) wurde mit einem SEB PT/1 Potentiometer und jene der Kette (B) mit einem Radiometer PHM 4d durchgeführt. Die Bezugselektrode Ag, AgCl war nach Brown¹¹ hergestellt, während die Glaselektrode vom Typ Beckman n. 40 498 war, welche gegen eine H₂-Elektrode geeicht wurde.

Nach jeder Zugabe erreichte das Cd-Amalgam ein konstantes Potential in 15-30 Min., während das Glaselektrodenpotential in wenigen Min. konstant wurde.

Das Amalgampotential blieb 3 Stdn. innerhalb $\pm 0.03 \text{ mV}$ und eine Nacht innerhalb $\pm 0.1 \text{ mV}$ konstant. Die Differenz $E_A - E_A^\circ$ war innerhalb $\pm 0.1 \text{ mV}$ reproduzierbar, und jene von $E_B - E_B^\circ$ innerhalb $\pm 0.2 \text{ mV}$. Die Titrationen wurden so lange fortgesetzt, bis E_A einen konstanten Wert 2 Stdn. erreichte. Lösungen der Endpunkte jeder Titration blieben wenigstens 15 Stdn., vom Ende der Titration an, klar, wenn sie in N₂-Atmosphäre gehalten wurden.

Um die Realität der Gleichgewichte bestimmen zu können, wurden Rück-Titrationen in folgender Weise ausgeführt: eine Lösung mit der Zusammensetzung:

B M an Cd(II); H M an H⁺; (1–2 B–H) M an Na⁺, 1,00M an ClO₄⁻ wurde den Endlösungen zweier Titrationen beigefügt (s. Tab.).

Aus der Tabelle und der Abbildung ersieht man, daß die Resultate der direkten Titrationen und der zwei Rück-Titrationen gut übereinstimmen.

Daten und Rechnungen

In Tab. 1 sind die experimentellen Werte von η (— log h) gesammelt. Titrationen sind an H = 0.025M und $B = (2.0; 1.0; 0.5) \times 10^{-3} M$ und an H = 0.010M und $B = (1.0; 0.5) \times 10^{-3}M$ ausgeführt werden.

	Experimentelle Daten	
$B=2.0 imes10^{-3}M$	H = 0.025M	
Serie a: $\eta (-\log h; -\log a):$	0,064 (1,910; 3,67)/0,096 (2,026; 3,44)/0,116 (2,092; 3,33)/0,138 (2,158; 3,22).	
Serie b: $\eta (-\log h; -\log a)$:	0,023 (1,730; 4,19)/0,049 (1,859; 3,79)/0,080 (1,984; 3,52)/0,125 (2,111; 3,30); 0,149 (2,177; 3,19).	
$B = 1.0 imes 10^{-3}M$		
Serie a: $\eta (-\log h; -\log a)$:	0,065 (1,920; 3,67)/0,096 (2,028; 3,44)/0,177 (2,094; 3,32)/0,139 (2,158; 3,22)/0,167 (2,233; 3,11).	
Serie b: $\eta (-\log h; -\log a):$	$\begin{array}{c} 0,027\;(1,763;4,07)/0,064\;(1,925;3,63)/0,110\;(2,087;\\3,33)/0,177\;(2,258;3,08)/0,260\;(2,429;2,85)/0,309\\(2,511;2,75)/0,363\;(2,593;2,65)/0,422\;(2,670;2,50). \end{array}$	
$B = 0.5 imes 10^{-3} M$ Serie a:		
$\eta (-\log h; -\log a):$	0,057 (1,852; 3,80)/0,073 (1,957; 3,57)/0,082 (2,018; 3,45)/0,095 (2,065; 3,37).	
Serie b: $\gamma (-\log h; -\log a):$	0,049 (1,923; 3,64)/0,171 (2,265; 3,07)/0,261 (2,452; 2,82)/0,307 (2,537; 2,72)/0,365 (2,623; 2,62)/0,419 (2,696; 2,53)/0,471 (2,763; 2,46).	
Serie c: $\gamma (-\log h; -\log a):$	0,020 (1,732; 4,18)/0,036 (1,812; 3,91)/0,064 (1,923; 3,64)/0,111 (2,092; 3,33)/0,176 (2,266; 3,06)/0,267 (2,452; 2,82)/0,325 (2,537; 2,72)/0,373 (2,621; 2,62).	
$B=1.0 imes10^{-3}M$	H = 0,010M	
Serie a: $\eta (-\log h; -\log a):$	0,010 (2,069; 4,42)/0,022 (2,138; 4,07)/0,051 (2,283; 3,66)/0,074 (2,380; 3,47).	
Serie b: $\eta (- \log h; - \log a):$	0,059 (2,285; 3,63)/0,176 (2,640; 3,07)/0,247 (2,809; 2,85)/0,308 (2,895; 2,75)/0,358 (2,973; 2,66)/0,408 (3,041; 2,58)/0,453 (3,097; 2,52).	
Serie c: $\gamma (-\log h; -\log a)$:	0,015 (2,063; 4,45)/0,038 (2,204; 3,85)/0,101 (2,457; 3,33)/0,132 (2,549; 3,19)/0,165 (2,640; 3,07)/0,207 (2,733; 2,94)/0,253 (2,819; 2,84)/0,301 (2,902; 2,74)/0,349 (2,973; 2,66).	

Tabelle 1

Tabelle .	1 (Fortsetzung)
-----------	-----	--------------

	Experimentelle Daten	
Serie d*:		
$\eta (-\log h;\log a):$	0,309 (2,909; 2,76)/0,275 (2,851; 2,80)/0,177 (2,660; 3,04).	
$B = 0.5 \times 10^{-3}M$ Serie a :	,	
$\eta (-\log h; -\log a):$	0,025 (2,102; 4,22)/0,049 (2,222; 3,80)/0,122 (2,493; 3,28)/0,182 (2,650; 3,05)/0,256 (2,702; 2,86)/0,337 2,937; 2,70)/0,412 (3,047; 2,57).	
Serie b:		
$\eta (-\log h; -\log a):$	0,054 (2,293; 3,63)/0,175 (2,670; 3,03)/0,268 (2,855; 2,80)/0,316 (2,939; 2,70)/0,365 (3,019; 2,61)/0,410 (3,086; 2,53).	
Serie c*:		
$\eta (- \log h; - \log a):$	$\begin{array}{c} 0,368 \ (3,024;\ 2,60)/0,333 \ (2,965;\ 2,67)/0,283 \ (2,851; \\ 2,80)/0,202 \ (2,672;\ 3,02). \end{array}$	

* Rück-Titrationen.

Es konnte keine Titration an $B > 2 \times 10^{-3}M$ ausgeführt werden, da sich CdC₂O₄ bei sehr niedrigem η niederschlägt.

In Abb. 1 ist die Funktion η bezüglich — log *a* für alle Punkte, die aus den analytischen und gemessenen Werten *B*, *H*, *b*, *h* erhalten wurden, dargestellt.

Zur Berechnung der jedem η -Wert entsprechenden *a*-Werte kann man für die totale Säurekonzentration H die folgende Gleichung aufstellen:

$$H = h + K_1 h a + 2 K_1 K_2 h^2 a \tag{4}$$

In der Gl. (4) ist die Hydrolyse von Cd(II) vernachlässigt, was auf Grund der Resultate von *Biedermann* und *Ciavatta*¹² zulässig ist; weiterhin wird angenommen, daß in dieser Untersuchung keine gemischten Komplexe der Art CdHL auftreten (s. unten). Tab. 1 enthält auch die aus der Gl. (4) errechneten *a*-Werte, mit den Werten von $K_1 =$ $= 3.72 \pm 0.17 \times 10^3$ und $K_1K_2 = 4.35 \pm 0.55 \times 10^4$, die in einer früheren Untersuchung⁸ ermittelt wurden. Auf Grund der Fehlergrenze der Werte von K_1 und K_1K_2 kann man errechnen, daß die Werte von — log *a* mit einer Unsicherheit von ± 0.02 bekannt sind.

Alle experimentellen Daten sind in Abb. 1 verzeichnet. Daraus kann man gut ersehen, daß alle aus Titrationen mit verschiedenem B und H erhaltene Punkte auf einer einzigen Kurve liegen. Man kann als Konsequenz daraus entnehmen, daß die Funktion η unabhängig von B und H ist, und weder gemischte Komplexe (wie CdHL), noch

456

polynucleare Komplexe (vom Typ Cd_nL) anwesend sind. Die Gl. (4) ist demnach gültig.

Demnach kann man für die totale Cadmium(II)-Konzentration Bdie folgende Gleichung aufstellen:

$$B = b + \beta_n \, b \, a^n \tag{5}$$

daraus ergibt sich weiter

$$\eta = \log \left(1 + \beta_n \, a^n \right) \tag{6}$$

Abb. 1. $\eta = \log (B/b)$ gegen — log a. Die Kurve ist die normalisierte in der Stellung der besten Übereinstimmung

Zur Erklärung der Daten η (- log a) und zur Auffindung der Werte der Konstanten wurden viele Hypothesen aufgestellt; die Daten konnten jedoch erklärt werden, indem man die einfachste Hypothese annahm und zwar, daß nur ein CdL-Komplex anwesend war. In diesem Fall geht die Gl. (5) in die folgende:

$$\eta = \log \left(1 + \beta_1 \, a \right) \tag{7}$$

über.

Um diese Hypothese bestätigen zu können, vergleicht man die Punkte von Abb. 1 mit einer theoretischen Kurve nach Sillén¹³:

$$y = \log\left(1+u\right) \tag{8}$$

wobei $u = \beta_1 a$.

Alle Daten η (— log *a*) stimmen sehr gut mit der Kurve der Gl. (8) überein. Bei der besten Übereinstimmung liest man für den Wert log u = 0 den — log *a* ab und erhält daraus log $\beta_1 = 2.75 \pm 0.05$.

In Abb. 1 ist die theoretische Kurve der Gl. (8) über die Daten gezeichnet: die Übereinstimmung ist sehr gut.

Schluß

Vor der Bildung von festem CdC_2O_4 bildet sich unter den studierten experimentellen Bedingungen der Komplex CdC_2O_4 mit $\log \beta_1 =$ $= 2,75 \pm 0,05$. Es ist wichtig, die Stabilität des gefundenen Komplexes gegenüber dem entsprechenden Acetat-Komplex zu vergleichen.

Gerding¹⁴ bestimmte, unter den gleichen experimentellen Bedingungen, die für diese Arbeit benützt wurden, die Stabilitätskonstante von Cd(CH₃COO)₂: log $\beta_2 = 1,82$.

Daraus kann man annehmen, daß die Erhöhung der Stabilität

$$\log \beta_{1(\text{oxalat})} - \log \beta_{2(\text{acetat})} = 0.95$$

den Chelateffekt für die Bildung eines Chelatringes darstellt.

Diese Arbeit ist mit einem Beitrag des CNR, des italienischen Forschungsrats, durchgeführt worden.

Literatur

- ¹ W. J. Clayton und W. C. Vorburg, J. Amer. Chem. Soc. 59, 2414 (1937).
- ² D. L. McMasters, J. C. Di Raimondo, L. H. Jones, R. P. Lindley und E. W. Zeltmann, J. Phys. Chem. 66, 249 (1962).
- ³ J. Stary, Anal. Chim. Acta 28, 132 (1963).
- ⁴ H. E. Hellwege und G. K. Schweiter, J. inorg. nucl. Chem. 27, 99 (1965).
- ⁵ G. Biedermann und L. G. Sillén, Arkiv Kem. 5, 425 (1953).
- ⁶ L. W. Winkler, Z. Angew. Chem. 34, 466 (1921).
- ⁷ G. Gran, Analyst 77, 661 (1952).
- ⁸ E. Bottari und L. Ciavatta, Gazz. Chim. Ital. 95, 908 (1965).
- ⁹ E. Bottari und A. Rufolo, Mh. Chem. 99, 2383 (1968).
- ¹⁰ W. Forsling, S. Hietanen und L. G. Sillén, Acta Chem. Scand. 6, 901 (1952).
- ¹¹ A. S. Brown, J. Amer. Chem. Soc. 56, 646 (1934).
- ¹² G. Biedermann und L. Ciavatta, Acta Chem. Scand. 16, 2221 (1962).
- ¹³ L. G. Sillén, Acta Chem. Scand. 10, 186 (1956).
- ¹⁴ P. Gerding, Acta Chem. Scand. 22, 1283 (1968).

Korrespondenz und Sonderdrucke: Dr. E. Bottari Istituto di Chimica Analitica Cittá Universitaria I-00185 Roma Italia